片持支持梁
先端集中荷重の場合
\[ M(x)=Wx \\ \theta(x)=\dfrac{W}{2EI}x^2+C_{1} \\ \delta(x)=\dfrac{W}{6EI}x^3+C_{1}x+C_{2} \\ \] となり、境界条件より \[ \theta(L)=\dfrac{WL^2}{2EI}+C_{1}=0 \\ C_{1}=-\dfrac{WL^2}{2EI} \\ \delta(L)=\dfrac{WL^3}{6EI}-\dfrac{WL^3}{2EI}+C_{2}=0 \\ C_{2}=\dfrac{WL^3}{3EI} \] よって \[ \theta(x)=\dfrac{W}{2EI}x^2-\dfrac{WL^2}{2EI} \\ \delta(x)=\dfrac{W}{6EI}x^3-\dfrac{WL^2}{2EI}x+\dfrac{WL^3}{3EI} \] また、最大たわみ量\(\delta_{max}\)は \[ \begin{vmatrix}\delta(x)\end{vmatrix}_{max}=\begin{vmatrix}\delta(0)\end{vmatrix}= \dfrac{WL^3}{3EI} \]等分布荷重の場合
\[ M(x)=\dfrac{w}{2}x^2 \\ \theta(x)=\dfrac{w}{6}x^3+C_{1} \\ \delta(x)=\dfrac{w}{24}x^4+C_{1}x+C_{2} \] となり、境界条件より \[ \theta(L)=\dfrac{w}{6}L^3+C_{1}=0 \\ C_{1}=-\dfrac{w}{6}L^3 \\ \delta(L)=\dfrac{w}{24}L^4-\dfrac{w}{6}L^4+C_{2}=0 \\ C_{2}=\dfrac{w}{8}L^4 \] よって \[ \theta(x)=\dfrac{w}{6}x^3-\dfrac{w}{6}L^3 \\ \delta(x)=\dfrac{w}{24}x^4-\dfrac{w}{6}L^3x+\dfrac{w}{8}L^4 \] また、最大たわみ量\(\delta_{max}\)は \[ \delta_{max}= \begin{vmatrix}\delta(0)\end{vmatrix}=\dfrac{w}{8}L^4=\dfrac{W}{8}L^3 \\ ※W=wl \]