両端支持梁
中央集中荷重の場合
\[ M(x)= \begin{cases} \dfrac{W}{2}x & (0 \leq x \leq \dfrac{L}{2}) \\ \dfrac{W}{2}(L-x) & (\dfrac{L}{2} \leq x \leq L) \end{cases} \\[30pt] \ \ \theta(x)= \begin{cases} \dfrac{1}{EI}(\dfrac{W}{4}x^2+C_{1}) & (0 \leq x \leq \dfrac{L}{2}) \\ \dfrac{1}{EI}[-\dfrac{W}{4}(L-x)^2+C_{2}] & (\dfrac{L}{2} \leq x \leq L) \end{cases} \\[30pt] \ \ \delta(x)= \begin{cases} \dfrac{1}{EI}(\dfrac{W}{12}x^3+C_{1}x+C_{3}) & (0 \leq x \leq \dfrac{L}{2}) \\ \dfrac{1}{EI}[\dfrac{W}{12}(L-x)^3-C_{2}(L-x)+C_{4}] & (\dfrac{L}{2} \leq x \leq L) \end{cases} \] となり、境界条件より \[ \delta(0)=C_{3}=0 \\ \delta(L)=C_{4}=0 \\ \theta(\dfrac{L}{2})=\dfrac{1}{EI}(\dfrac{WL^2}{16}+C_{1})=\dfrac{1}{EI}(-\dfrac{WL^2}{16}+C_{2}) \\ \ \ \rightarrow C_{1}-C_{2}=-\dfrac{WL^2}{8} \\ \delta(\dfrac{L}{2})=\dfrac{1}{EI}(\dfrac{WL^3}{96}+\dfrac{C_{1}L}{2})=\dfrac{1}{EI}(\dfrac{WL^3}{96}-\dfrac{C_{2}L}{2}) \\ \ \ \rightarrow C_{1}+C_{2}=0 \\ \ \ \rightarrow C_{1}=-\dfrac{WL^2}{16}\quad C_{2}=\dfrac{WL^2}{16} \] よって \[ \theta(x)= \begin{cases} \dfrac{1}{EI}(\dfrac{W}{4}x^2-\dfrac{WL^2}{16}) & (0 \leq x \leq \dfrac{L}{2}) \\ \dfrac{1}{EI}[-\dfrac{W}{4}(L-x)^2+\dfrac{WL^2}{16}] & (\dfrac{L}{2} \leq x \leq L) \end{cases} \\[30pt] \delta(x)= \begin{cases} \dfrac{1}{EI}(\dfrac{W}{12}x^3-\dfrac{WL^2}{16}x) & (0 \leq x \leq \dfrac{L}{2}) \\ \dfrac{1}{EI}[\dfrac{W}{12}(L-x)^3-\dfrac{WL^2}{16}(L-x)] \end{cases} \] また、最大たわみ量\(\delta_{max}\)は \[ \delta_{max}=|\delta(\dfrac{L}{2})|=\dfrac{WL^3}{48EI} \]等分布荷重の場合
\[ M(x)=-\dfrac{w}{2}x^2+\dfrac{wl}{2} \\ \theta(x)=\dfrac{1}{EI}(-\dfrac{w}{6}x^3+\dfrac{wl}{4}x^2+C_{1}) \\ \delta(x)=\dfrac{1}{EI}(-\dfrac{w}{24}x^4+\dfrac{wl}{12}x^3+C_{1}x+C_{2}) \] となり、境界条件より \[ \delta(0)=\dfrac{C_{2}}{EI}=0 \\ \delta(L)=\dfrac{1}{EI}(-\dfrac{wL^4}{24}+\dfrac{wL^4}{12}+C_{1}L)=0 \\ \rightarrow C_{1}=-\dfrac{wL^3}{24} \] よって \[ \theta(x)=\dfrac{1}{EI}(-\dfrac{w}{6}x^3+\dfrac{wl}{4}x^2-\dfrac{wL^3}{24}) \\ \delta(x)=\dfrac{1}{EI}(-\dfrac{w}{24}x^4+\dfrac{wl}{12}x^3-\dfrac{wL^3}{24}x) \] また、最大たわみ量\(\delta_{max}\)は \[ \delta_{max}=|\delta(\dfrac{L}{2})|=\dfrac{5WL^3}{384EI} \]